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BACKGROUND 
 

Devices with time varying output have some randomness (i.e., uncontrolled fluctuations) in 
their output. Thus, for example, a sensor that measures environmental data in real time has a 
nonzero output even when no data is being measured. Such nonzero output is purely noise since the 
signal component is zero, and this noise can be analyzed in order to derive performance 
specifications for the device. 
 

The Allan Variance (AV) is a function of time that is used to quantify one aspect of the 
device’s output and that is the bias stability. To understand what bias stability is, first bias needs to 
be defined. Bias is a long-term average of a time varying data stream. Consider, for example, figure 
1, which shows some typical output of a Crossbow Technology VG700CA (ref. 1) gyroscope (gyro) 
while the unit is at rest. 

 
Figure 1 

VG700CA rate output (ref. 1) 
 

A quick inspection of the data in figure 1 shows that a 120-sec duration seems to be a 
sufficiently long duration over which to calculate a long-term average (i.e., the bias). The bias for this 
data is about 0.15 deg/sec. Some questions arise in connection with this calculation. Firstly, this bias 
value was calculated using an averaging time of 120 sec. This is not the only possible averaging 
time that could have been used. Furthermore, since this bias value is an average of a set of random 
numbers, it itself is a random number. Therefore, a number of independent samples of this bias 
should be taken and averaged somehow in order to derive a bias value with higher confidence.  

 
An illustration of taking multiple averages of the gyro output using different time periods can 

be seen in the next few figures. Figure 2 illustrates averaging multiple 1-sec intervals, figure 3 
illustrates averaging multiple 10-sec intervals, and figure 4 illustrates averaging multiple 500-sec 
intervals. 
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Figure 2 

Data divided into bins of 1-sec length (ref. 1) 

 
Figure 3 

Data divided into bins of 10-sec length (ref. 1) 
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Figure 4 

Data divided into bins of 500-sec length (ref. 1) 
 
Inspection of these figures shows two things: (1) averaging over different time intervals of the 

same duration could give different results and (2) averaging over different durations could give 
different results. Thus, to thoroughly characterize the randomness, a two-fold averaging should be 
done. 
 

The AV was defined to enable calculation of such averages for random, time-varying 
processes. The AV is a function of averaging time and shows, for each averaging time, how stable 
the variance of the process is over a set of independent samples. The AV has been used to 
characterize the randomness of the output of a variety of devices such as clocks, oscillators, 
amplifiers (ref. 2), and gyros. 
 

Figure 5 shows the AV curve for the gyro whose time-dependent output is show in figure 1. At 
this point, it is important to clarify a point of confusion in the AV literature since this confusion is 
evident in figure 5. The output of a gyro is in units of angle/time (e.g., deg/sec). Thus, the variance of 
the gyro output is in deg2/sec2. However, it is more informative to present the Allan deviation (AD) 
rather than the AV since the AD is in the same units as the gyro output. The AD is simply the square 
root of the AV. The confusion arises from the fact that in verbal discussions, the AV is described, but 
in plots of data, the AD is presented. So, for example in figure 5, the title of the graph is correct, and 
the units of the y-axis are deg/hr. However, the title of the y-axis should be “Allan Deviation” rather 
than “Allan Variance.” In the remainder of this report, careful attention will be given to the distinction 
between AV and AD. 
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Figure 5  

AD curve for Crossbow Technology VG700CA gyro (ref. 1) 
 

This report focuses on the use of AV to characterize gyro output. Besides being informative in 
itself, the AD curve is also the source of some gyro specifications, i.e., bias stability and angle 
random walk (refs. 1 and 3). 
 

The foregoing discussion describes the calculation of AD for uniformly spaced time samples 
of the gyro data. In some cases, the time samples are not uniformly spaced due to some 
irregularities in the data collection process. In such cases, the conventional method for AD 
calculation is not applicable, and a new method must be derived. One approach is to somehow 
interpolate “missing” data and apply second difference statistics (ref. 2) to the reconstructed time 
series (refs. 4 and 5, both of which are cited in ref. 6). This approach has the disadvantage that the 
researcher is imposing statistical features on the data that he/she is trying to characterize. 
 

An improved technique for representing AD for nonuniformly spaced time samples is 
presented in reference 6. This approach uses all available data and does not do any interpolation. In 
the scenario described in reference 6, data was collected only on Mondays, Wednesdays, and 
Fridays, and thus the intervals between measurements are two days, two days, and three days. This 
approach uses a modified second difference operator based on the two different time intervals (two 
days and three days), and the AV is proportional to the expected value of the squared operator. A 
limitation of this approach is that, as presented, it is applicable to time series with only two different 
time intervals. The approach presented here is applicable to time series with time intervals of 
arbitrary duration that are arbitrarily distributed throughout the time series. Furthermore, the 
approach presented here automatically determines the minimum and maximum valid arguments for 
the AV function. 
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SUMMARY 
 

As a baseline for the new approach to be presented, the report first presents pseudocode for 
the conventional approach for calculating the AV. Then, the report presents pseudocode for the 
modified approach, which accommodates nonuniformly spaced time samples. Then, the report 
presents and documents Matlab code that was used to implement the modified approach and 
presents a typical AD plot that was produced by the Matlab program. AD plots are presented for 
evenly spaced input data as well as for unevenly spaced input data showing good agreement 
between comparable datasets.  
 
 

INTRODUCTION 
 

This report first describes the conventional definition and method of calculation of the AV. 
One assumption that is made in the conventional method is that the time samples of the gyro output 
that are used in the calculation are evenly spaced in time. In actual systems for measurement of gyro 
noise, it can happen that the time samples are not uniformly spaced. In such a case, the 
conventional formulas are not applicable, and a modified method is required in order to calculate an 
AD curve. This report presents such a modified method for calculating the AV of data sets in which 
the samples are not uniformly spaced in time. 
 

In particular, the report first presents the conventional formula for AV calculation and 
presents pseudocode for a computer program to calculate it. Then, the report presents modified 
pseudocode for calculating the AV in the presence of nonuniformly sampled noise data. Then, 
Matlab code is presented, which can be used to calculate the AV for either uniformly or nonuniformly 
sampled noise data. Finally, some AV curves that were calculated using the Matlab code are 
presented. 

 
 

METHODS, ASSUMPTIONS, AND PROCEDURES  
 

This section first describes the conventional AV equation and the concepts behind it. Then, 
pseudocode for calculating the conventional AV is presented. Then, pseudocode for calculating the 
modified AV is presented followed by a presentation of Matlab code for implementation of that 
pseudocode. 
 
Conventional Allan Variance Equation 
 

The basic concept of the conventional method of calculation of AV is as follows. The input 
data is a set of evenly spaced time values together with gyro output data (measured while the unit is 
at rest) in units of angle/time for each of the time values. The output of the calculation is an AD 
function in units of angle/time versus averaging interval in units of time. 
 

Here is how to calculate the AV for a particular value of the sampling duration τ (tau). First, 
the set of gyro values is partitioned into bins of duration τ. For example, if the sampling duration τ is 
2 sec and there are 4,000 sec of data, then there will be 2,000 bins of data. Next, the average gyro 
value for each bin is calculated. Then, the square of the difference between the averages for each 
adjacent pair of bins is calculated. Finally, the average value of all the squared differences is 
calculated. In equation form, the AV is defined (ref. 3) as follows 

 

                                      
 

       
                   

  
                                            (1) 
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where N  is the number of bins of gyro data and a(τ)i denotes the average over the ith bin of duration 
τ.  
 

It is important to note that not all values of τ are valid arguments for use in equation 1. A 
basic rule of thumb in calculating averages as part of the AV calculation is that at least nine data 
values should be used in calculating the average (refs. 1 and 3).  Note that in equation 1, two 
averages are being calculated: the average a over each bin and the average over all of the i bins. To 
calculate a valid average over each bin, each bin should contain at least nine values, so that  

 
                                                                                                                                          (2) 

 
where Δt is the temporal spacing between gyro data values. Thus, equation 2 gives a lower limit for 
τ. To calculate a valid average over all of the bins, the entire data set should contain at least nine 
bins of duration τ, so that  
 

                                                                                                                                        (3)  
where duration is the total duration of the dataset and is equal to N Δt. Thus, equation 3 gives an 

upper limit for τ. A typical range of valid τ values is 0.1 sec to over 1,000 sec (ref. 3). 
 

The bias stability is one commonly used performance specification for gyros, and its value is 
derived from the AV curve. In particular, it is the minimum value of the AD curve; recall that the AD is 
the square root of the AV. 
 
Pseudocode for Conventional Allan Variance Calculation 
 

As a baseline to use for deriving the modified AV formula, pseudocode for the conventional 
AV is now presented. The pseudocode takes in gyro outputs in three dimensions (x, y, and z) as a 
function of time, the set of time values at which the gyro outputs are measured, the time spacing 
between each of the data samples, and the number of τ values for which the AV is to be evaluated. 
The pseudocode outputs the AV functions for each of the gyro data sets evaluated at the specified 
number of τ values logarithmically spaced between the minimum valid τ value and the lesser of 
1,000 sec and the maximum valid τ value. 
 

The pseudocode is now presented. The names of Matlab functions are in bold font. The 
inputs are  
 

 Four column vectors: gyrox, gyroy, gyroz, and tvals. 
 Δt  (the time spacing between the gyro output data points). 

 numtaus, which is the number of tau values for which to calculate the AV. In this 
work, numtaus = 250 is used. 

 
Derived quantities are 
 

 The number of rows N in the input data vectors. 

 τmin and τmax, which are the minimum and maximum valid values of τ (the sampling 
duration).  

 τmin = 9 Δt, where Δt is spacing of tvals, according to equation 2. 

 τmax = duration/9, where duration = N Δt is the total time duration of the 
datasets, according to equation 3.  

 tauvals, which is a set of numtaus logarithmically spaced points between τmin  and 
minimum (τmax, 1,000 sec). 
 



UNCLASSIFIED 

Approved for public release; distribution is unlimited. 

7 

duration = N * Δt                                                                                                                            (4) 
 

for k = 1 to numtaus                                                                                                                      (5) 
 

τ = tauvals(k)                                                                                                                         (6) 
 

numbins =  fix(duration / τ)                                                                                                   (7) 
 

        %Note: fix is a Matlab function1 that rounds a number toward zero.        
 
                    for i = 1 to numbins                                                                                                               (8) 

 

                                        –                Δ           %Note: This is the starting index of the bin.   (9) 
 
                                                  Δ                      %Note: This is the ending index of the bin.    (10)                                                 
 

                                                                                                                                     (11) 
 

                                 %Note: mean is a Matlab function2 that returns the mean of its argument. 
 
                                                                                                                                       (12) 

 
                                                                                                                                        (13) 

 
                    end i loop                                                                                                                            (14) 

 

              
 

            
                               

                                            (15) 

 

              
 

            
                               

                                            (16) 

 

              
 

            
                               

                                             (17) 

 
end k loop                                                                                                                                    (18) 

 
Procedure for Modified Allan Variance Calculation 
 

For each value of τ, the conventional AV calculation partitions the gyro data sets into bins 
with approximately τ / Δt elements in them. Thus, all bins have the same number of elements in 
them. However, if the gyro values are not uniformly spaced, then there is no unique value of Δt. 
Therefore, a new way must be found to partition the gyro data sets into bins.  

 
The basic concept behind the modified AV calculation is that all bins should cover the same 

time duration τ. The first major task in the procedure is to determine the starting and ending indices 
for each bin of the tvals vector. Then, the averages over the gyro value in each bin can be computed. 
However, each bin can now have different numbers of values, so the averages are calculated over 
different numbers of values.  

 

                                                           
1
 http://www.mathworks.com/help/matlab/ref/fix.html  

2
 http://www.mathworks.com/help/matlab/ref/mean.html  
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The following sections describe the derivation of τmin and τmax, and the pseudocode for the 
calculation of AV for unevenly spaced time values. 

 
Derivation of minimum and maximum values of τ 

 
The τmin must be defined in such a way as to ensure that, regardless of which τ 

value is selected, each bin will have at least nine values.  Figure 6 illustrates a notional example of 
how τmin is calculated. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6 
Procedure for calculation of τmin 

 
In figure 6, the left-most column represents the tvals vector for an example set of unevenly 

spaced time values in some arbitrary, unspecified units of time.  The column to the right of that 
represents the deltats vector, each of whose values is the difference between adjacent values of 
tvals. An examination of the deltats vector clearly shows that the time values are unevenly spaced. 
The next step in deriving τmin  is to find the total time duration of each set of nine consecutive values 
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in the deltats vector. This calculation gives rise to the w vector shown in figure 6. Next, the maximum 
value of w, which equals 15, is found. That is a special value because if τ equals 15, then each bin of 
tvals is guaranteed to have at least nine values. Of course if τ is greater than 15, each bin will 
certainly have at least nine values. However, if τ is less than 15, there might not be nine values in 
each bin. For example, consider what happens if τ equals 12. Then the first bin in tvals will have only 
eight elements. Thus, setting τmin equal to 15 ensures that whatever value of τ is used, a valid 
average can be performed over each bin of tvals. 

 
The maximum value of τ depends on the total duration of the dataset, just as in the case of 

uniformly spaced time values. Thus τmax is equal to the total duration divided by nine. In terms of the 
vectors shown in figure 6, τmax  is the sum of the values in the deltats vector divided by nine. 
 

Pseudocode for the Calculation of Allan Variance for Nonuniformly Spaced Time Values 
 

The pseudocode for calculation of the AV for nonuniformly spaced time samples 
takes in gyro outputs in three dimensions (x, y, and z) as a function of time, the set of time values at 
which the gyro outputs are measured, and the number of τ values for which the AV is to be 
evaluated. The pseudocode outputs the AD functions for each of the gyro data sets evaluated at the 
specified number of τ values logarithmically spaced between the minimum valid τ value and the 
lesser of 1,000 sec and the maximum valid τ value. 
 

One difference between this procedure and the procedure for uniformly spaced time values is 
the derivation of the start and end of each bin. In the procedure for uniformly spaced time values, a 
simple algebraic formula was used for this derivation. However, here a more complex procedure 
must be used.  The procedure goes through the list of elements in tvals, dividing it into bins of 
temporal duration τ. Since the data points are not evenly spaced in time, the different bins will have 
different numbers of elements. The procedure tabulates the list of starting indices and ending indices 
for each bin and saves these indices for later in the procedure when averages over the bins are 
carried out. Figure 7 shows an example of how the starting and ending indices are assigned for the 
example shown in figure 6. In figure 7, the value of τ is 15.  
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Figure 7 
Calculation of starting and ending indices of bins for τ = 15 

 
Figure 7 shows that an auxiliary vector, binnos, is defined in order to aid in the determination 

of the starting and ending indices of the bins. The values of binnos are determined by dividing all of 
the time values in tvals by τ and then rounding up to the next integer. Once the binnos values are 
assigned, bin ending indices can be determined by transitions in the values of binnos, and the 
starting index for the next bin is simply one more than the ending index of the previous bin. Note that 
in figure 7, the final bin has fewer than nine elements in it, so that bin will be excluded from the 
averaging process that comes later in the procedure. 
 

The pseudocode is as follows. The inputs are  
 

 Four column vectors: gyrox, gyroy, gyroz, and tvals. 
 numtaus, which is the number of tau values for which to calculate the AV. In this 

work, numtaus = 250 is used. 
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Derived quantities are 
 

 The number of rows N  in the input data vectors. 

 τmin and τmax, which are the minimum and maximum valid values of τ  (the sampling 
duration).  

 τmin depends on the spacing of tvals. Slide a window over each consecutive 
nine element set of time values in tvals. The maximum duration from start to 
finish over all these windows is τmin as illustrated in figure 6. 

 τmax = duration/9, where duration = N Δt  is the total time duration of the 
datasets according to equation 3.  

 tauvals, which is a set of numtaus logarithmically spaced points between τmin and 
τmax.  

 binnos is the vector that tells for each value of tvals  into which bin that value falls. 

 startindices is the vector of initial values of the bins. 

 endindices is the vector of final values of the bins. 
 

for k = 1 to numtaus                                                                                                                    (19) 
 

τ = tauvals(k)                                                                                                       (20) 
 

Initialize binnos(1) = startindices(1) = 1                                                            (21) 
 

for j = 2 to N                                                                                                        (22) 
 

                                                                              (23) 
 

                                                                  (24) 
 

                                                              (25) 
 

                                                                                         (26) 
 

                                                                       (27) 
 

                                                                  (28) 
 

                                                                     (29) 
 

                                                                      (30) 
                                                                                                

 
                                                                                       (31) 

 
end j loop                                                                                                            (32) 

 
Set final value of endindices to N                                                                      (33) 

 
for   = 1 to numbins                                                                                           (34) 

 
si = startindices(i)                                                               (35) 

 
ei = endindices(i)                                                                (36) 
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                                         (37) 

 

         
 

       
          

    
                                         (38) 

 

         
 

       
          

    
                                         (39) 

 
                                                                                                                       (40) 

 

             
 

            
                               

                     (41) 

 

             
 

            
                               

                     (42) 

 

             
 

            
                               

                      (43) 

 
end k loop                                                                                                                                    (44) 

 
Matlab Code for Modified Allan Variance Calculation 
 

The following section presents the actual Matlab code3 that implements the pseudocode that 
was presented for calculation of AV for unevenly spaced time values. The code actually outputs the 
AD rather than the AV since the AD is what is usually reported in the industry as a performance 
specification. The code presented here is broken into sections so that each section can be 
explained. The entire code without breaks is presented in the appendix. 
 

The first task is to clear all previously stored values of all variables (fig. 8). 
 

% Allan Variance Calculation April 2014; Written by Naomi Zirkind 
% This program calculates the Allan Deviation curves for x, y, and z gyro 
% data streams, and prints a plot of the Allan Deviation. 
% Inputs: allanarray ([number of rows], 4) 
% Derived quantities:  N (number of rows in allanarray), tvals[N], 
% gyrox[N], gyroy[N], gyroz[N] 
% Outputs: allandevx, allandevy, allandevz  -- all are functions of tau 
 
clear all; 

     
Figure 8 

Clearing all previously stored values of all variables 
 

Read in Data from File 
 

The next task is to read in the array, which is assumed to be comprised of four 
columns – the first column is time, and the second through fourth columns are the x, y, and z values 

                                                           
3
 Published with MATLAB® R2013a  
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of the gyro output, respectively. Each row of the array represents the data collected at a particular 
time (fig. 9).  
 

allanarray = xlsread('data_set_name.xlsx'); 

 
Figure 9 

Reading in data for allanarray 
 

Optional Random Removal of Rows from Allanarray to Simulate Nonuniformly Spaced Time 
Samples 
 

A new array, sparseallanarray, is created, which is a copy of allanarray except that 
every seventh row of allanarray is either kept or discarded according to the value of a binary random 
variable r. After all seven-row blocks of data in allanarray have been processed in this manner, the 
number of as yet uncopied rows in allanarray is mod (allanarraynumrows, 7), where 
allanarraynumrows is the number of rows in allanarray. This number is used to figure out how many 
rows of allanarray still need to be copied into sparseallanarray. 
 

To increase efficiency of the Matlab program, the array sparseallanarray was preallocated 
(i.e., filled with zeroes) before execution of the loop in which its values are assigned. Once all the 
data elements of sparseallanarray have been assigned, the zeroes at the end of this array that have 
not yet been overwritten with data from allanarray must be eliminated. This is done by using the 
Matlab “find” function, which returns the indices of the nonzero elements of its argument. The largest 
of these indices represents the end of data (as opposed to the zeroes) in the sparseallanarray 
matrix. The final rows of allanarray, if there are any left uncopied, are now copied into 
sparseallanarray beginning right after the last data element in sparseallanarray.  
 

Finally, only the data values of sparseallanarray are copied into a new matrix, 
sparseallanarray2, which does not have the superfluous zeroes at its end. This new matrix 
sparseallanarray2 is now copied into the variable allanarray, which is then processed according to 
the original Matlab code to find its AD. 
 

This entire section is optional and self-contained, so that if the user wants to do a normal (i.e., 
without data removal) calculation of the AD, this entire section can simply be commented out. This 
new array, sparseallanarray, can be seen in figure 10. 
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i = 1; % index for sparse array elements 
j = 1; % index for allanarray elements 
allanarraynumrows = size(allanarray,1); 
sparseallanarray = zeros(allanarraynumrows,4);  % preallocation 
 
while j < allanarraynumrows - 5 
    sparseallanarray(i:i+5,:) = allanarray(j:j+5,:); % copy six rows 
    r = randi(2,1);   % Returns binary random variable 1 or 2 with equal probability 
    if (r==2) 
        sparseallanarray(i+6,:) = allanarray(j+6,:);  % Copy the seventh row 
        i=i+7; 
    else i=i+6; % Here, r=1. Don't copy the seventh row 
    end 
    j = j+7; % Move ahead to the next block of elements of allanarray 
end 
 
% copy the mod(allanarraynumrows,7)elements at the end of allanarray 
remainder = mod(allanarraynumrows,7); % number of rows of allanarray than have not yet been 
copied to sparseallanarray 
nonzeroindices = find(sparseallanarray(:,1));  % Find nonzero elements in column 1, which is the 
time values 
lastnonzeroelement = nonzeroindices(end);  % last nonzero element of time values 
if ~isequal(remainder,0) 
    sparseallanarray(lastnonzeroelement+1:lastnonzeroelement+remainder,:) = 
allanarray(allanarraynumrows-remainder+1:allanarraynumrows,:); 
end 
 
% get rid of the extra zeroes at the end of sparseallanarray 
sparseallanarray2 = sparseallanarray(1:lastnonzeroelement+remainder,:); 
allanarray = sparseallanarray2;  %copy the sparse allan array into allanarray for further processing 

 
Figure 10 

The creation of sparseallanarray 
 

Break Up Big Matrix into Smaller Matrices 
 

After the array allanarray is read in, it is decomposed into its individual arrays for 
further processing (fig. 11).  
 

tvals = allanarray(: , 1); 
gyrox = allanarray(: , 2); 
gyroy = allanarray(: , 3); 
gyroz = allanarray(: , 4); 
N = length (tvals); 

 
Figure 11 

Allanarray broken up into individual arrays 
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Determine the Range of Valid τ Values 
 

At this point in the program, the major focus is on the tvals array, since that data is 
used in order to divide the gyro data into bins for averaging for each particular τ value. The first task 
here is to determine the minimum and maximum valid values of τ (i.e., τmin and τmax, respectively). As 
explained earlier, τ cannot be too small or else there will not be enough elements in each bin to do 
proper bin averages. Furthermore, τ cannot be too large or else there will not be enough bins to 
average over to calculate the AD. To calculate the minimum τ value, the program checks out all 
windows of length nine (the minimum number of elements needed to do a proper average) and 
assigns a value to τmin that is at least as large as the window with the largest time span. The 
procedure illustrated in figure 6 is followed. In assigning a value to τmax, the total duration of the 
dataset is divided by a number just slightly larger than nine in order to ensure that nine or more bins 
will be available for averaging for the largest value of τ (fig. 12).  
 

mask = ones(1, 9); 
deltats = diff(tvals); % vector of differences of adjacent time values 
w = conv(deltats, mask, 'valid'); 
taumin = max(w); 
duration = tvals(N); 
taumax = duration / 9.001; 

      
Figure 12 

Assigning values to τmin and τmax 
 

Set up Outer Loop over τ Values 
 

The outermost loop in the program is over the various values of τ. The values of τ to 
be used in the calculation range from τmin to τmax. The values of τ are logarithmically spaced since 
the AD plot is generally displayed as a log-log plot. The arrays that will eventually store the AD data 
are pre-allocated for improved execution efficiency. The binnos array, illustrated in figure 7, is also 
pre-allocated at this point. The implementation of these steps can be seen in figure 13. 

 

tauvals = logspace (log10(taumin), log10(taumax), 250); 
numtaus = length (tauvals); 
 
% Preallocation 
allandevx = zeros(1, numtaus); 
allandevy = zeros(1, numtaus); 
allandevz = zeros(1, numtaus); 
binnos = zeros(1, N); 

     
Figure 13 

Calculation of tau values 
 

 Outer Loop over τ values 
 

At this point begins the loop over k, an index for the various values of the tauvals 
array, which is the logarithmically spaced set of values between τmin and τmax. This loop constitutes 
the main body of the program. The startindices and endindices arrays whose derivation is illustrated 
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in figure 7 are pre-allocated for two reasons: (1) in order to improve execution efficiency and (2) in 
order to clear all values in these arrays that were calculated in previous iterations of the k-loop. 
 

Next, the j-loop iterates through all rows of the tvals array and calculates the values of 
binnos. When the loop detects an increment in binnos, it assigns values to the startindices and 
endindices arrays, which define the bins to be used for averaging.  
 

Regardless of the value of τ, the end index for the final bin will always be N, which is the 
number of rows in tvals. Therefore, the value of endindices for the final bin is explicitly set to N even 
though it does not correspond to any increment in binnos. It could happen that the final bin has fewer 
than nine elements, and if that is the case, then that bin will be disregarded and will not be used for 
averaging. 
 

The final steps in this section perform the actual AD calculation shown in equations 28 
through 30. The averaging is performed over the bins whose start and end indices are the values of 
the arrays startindices and endindices (fig. 14).     
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for k = 1:numtaus 
    tau = tauvals(k); 
 
% Create startindices and endindices arrays based on the array of 
% measurement times. Calculate endindices, and then startindices can easily 
% be derived from it. binnos is an auxiliary vector whose components are 
% the bin number of the corresponding element of tvals. 
    startindices = zeros(1,N);   %preallocation 
    endindices = zeros(1,N);     %preallocation 
    binnos(1) = 1; 
    startindices (1) = 1; 
 
    % j is row number in tvals, and i is bin number. 
    for j = 2:N 
        if (isequal (mod (tvals(j) , tau), 0)) 
            binnos(j)  = uint32( tvals(j) / tau ); 
        else binnos(j) = uint32 ( tvals(j) / tau) + 1; 
        end 
 
        if ( binnos(j) > binnos(j-1)) 
            i = binnos(j-1); 
            endindices(i) = j-1; 
            startindices(i+1) = endindices(i)+1; 
        end 
    end 
 
    endindices(binnos(N))= N; 
    % If the final bin has fewer than 9 elements, exclude it from future 
    % processing. 
    if (endindices(binnos(N)) - startindices(binnos(N)) < 8) 
        numbins = binnos(N) - 1; 
    else numbins = binnos(N); 
    end 
 
% Calculate averages, deltas, squareds, sumofsquares, and allandev vectors 
% Sum over each bin to get the bin averages 
 
% Preallocation 
avgsx = zeros(1, numbins); 
avgsy = zeros(1, numbins); 
avgsz = zeros(1, numbins); 
 
   for i = 1:numbins 
       si = startindices(i); 
       ei = endindices(i); 
 
       avgsx(i) = mean(gyrox(si:ei)); 
       avgsy(i) = mean(gyroy(si:ei)); 
       avgsz(i) = mean(gyroz(si:ei)); 
   end 
 
   squaredsx = (diff(avgsx)).^2; 
   squaredsy = (diff(avgsy)).^2; 
   squaredsz = (diff(avgsz)).^2; 
 
   allandevx(k) = (  sum(squaredsx) / (2 * (numbins -1))  )^0.5; 
   allandevy(k) = (  sum(squaredsy) / (2 * (numbins -1))  )^0.5; 
   allandevz(k)  = (  sum(squaredsz) / (2 * (numbins -1))  )^0.5; 
 
end 

 
Figure 14 

Final steps performed for the actual AD calculation 
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Write the Allan Deviation Vectors into Excel Files 
 

At this point, the three arrays for the AD of each gyro direction (x, y, and z) have been 
calculated, and they are stored as Excel files for later viewing and processing (fig. 15).  The units of 
these vectors are assumed to be deg/sec (i.e., the same units as the input gyro data). 
 

xlswrite ('tauvals.xls', tauvals); 
xlswrite ('allandevx.xls', allandevx); 
xlswrite ('allandevy.xls', allandevy); 
xlswrite ('allandevz.xls', allandevz); 

     
Figure 15 

Writing the AD arrays as Excel files 
 

Display the Vectors in a Log-log Plot  
 

The AD data is now converted from deg/sec to deg/hr, which is the usual unit for the 
AD for high performance gyros. Then, the plot parameters are set up for plotting of the AD data (fig. 
16). 
 

allandevx = allandevx * 3600; 
allandevy = allandevy * 3600; 
allandevz = allandevz * 3600; 
 
loglog (tauvals, allandevx, '-r', tauvals, allandevy, '-g',tauvals, allandevz, '-b') 
grid on 
xlabel ('Time (seconds)'); 
ylabel ('Allan Deviation (degrees / hour)'); 
title('Allan Deviation for Gyro Data'); 
legend('X-Axis', 'Y-Axis', 'Z-Axis'); 

 
Figure 16 

Plot parameters for AD data 
 

Display and Analysis of Allan Deviation Plots  
 

Figure 17 shows a set of AD curves4 calculated using the Matlab program presented 
here. 
  

                                                           
4
 The data come from a developmental system supplied by John Taylor of Mercury Data Systems, December 2012 and 

were acquired during the development process. 
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Figure 17 
AD plot for gyro data of a developmental system; uniformly spaced time samples 

 
Although the Matlab program used to generate figure 17 can accommodate input data 

sampled at nonuniform time intervals, the data used to calculate the curves in figure 17 actually was 
sampled at uniform time intervals. It is desirable to evaluate the performance of the Matlab code 
using data with nonuniform time intervals in order to test its full capability. An “apples-to-apples” 
comparison of the program’s output using a dataset with uniform samples versus its output with a 
comparable dataset with nonuniform samples would help validate the program’s performance. 
 

In order to generate the comparable dataset with nonuniform samples, the dataset with 
uniform samples had rows of data randomly removed5. This data removal resulted in basically the 
same dataset as the original but with nonuniform samples. This random data removal represents 
what actually happens in some data collection sessions: sometimes data samples are corrupted or 
lost due to random noise process. 
 

The data removal was performed as follows. The input dataset had uniform samples. The first 
six rows were copied into a new dataset. Then, a binary random number was generated that 
determined whether or not the seventh row would also be copied. This procedure was repeated as 
long as there were at least seven rows uncopied in the original dataset. The last few rows of the 
original dataset were then copied into the new dataset. The Matlab program was then run with this 
new dataset, and the result is shown in figure 18. 
 

                                                           
5
 The core concept of this suggestion was made by Thomas Bail, Air Force Nuclear Weapons Center, Kirtland Air Force 

Base, NM, April 2014. 

Gyro data is sampled at uniform time 

intervals. 
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Figure 18 
AD plot for gyro data of a developmental system; nonuniformly spaced time samples 

 
A comparison of figures 17 and 18 shows that the two sets of curves are quite similar though 

not identical. That gives credence to the validity of the approach presented here. 
 

As a simple check on the statistical properties of the nonuniformly spaced data, note that the 
original dataset had 848,682 rows. Dividing that by seven gives 121,240 seven-row blocks of data. It 
is expected that half of these blocks of data will have a row of data removed. Thus, it is expected that 
60,620 rows of data will be removed. Actually, the dataset used to calculate the curves in figure 18 
had 788,143 rows, which corresponds to an elimination of 60,539 rows – very close to the expected 
value of 60,620 rows. 

 
 

RESULTS AND DISCUSSION  
 

This report has presented a new technique for calculating the AV for nonuniformly spaced 
time samples. Pseudocode as well as Matlab code has been presented and documented with 
explanations for the various steps in the procedure.  The Matlab code is presented in its entirety and 
can be copied and pasted into a Matlab editor and executed after minor changes, i.e., specification 
of the input file and of plot parameters. 
 

This procedure can deal with time series with arbitrary spacing between time samples, which 
is a key advantage over the conventional approach. The modified approach for AV calculation that is 
presented here calculates the AV by binning the input data into bins of uniform time duration, 
although the various bins might have different numbers of data samples in them. The approach 
ensures that each bin has at least nine data points by restricting the values of the input argument τ to 

Gyro data is sampled at nonuniform 

time intervals. 
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the AV curves.   It does this by automatically calculating the minimum and maximum arguments of 
the AV function so as to ensure statistical reliability of the result. The Matlab code plots the AV only 
for arguments in the statistically valid range.  
 

A comparison was conducted by running the Matlab program with a uniformly sampled 
dataset and then again with a nonuniformly sampled dataset that was derived from the original by 
randomly removing rows of data from the original dataset. The AD curves produced for the two 
datasets agreed well, and the number of rows removed from the original dataset corresponded well 
with the expected value of how many rows would be removed. This comparison gives credence to 
the algorithm and Matlab code implementation that are presented here. 
 

One caveat is connected with the fact that the AD as calculated in the Matlab program is itself 
a random variable since it is a function of the gyro data values that are random variables. If the AV 
data is calculated using an average over many samples of gyro data, the calculated AV values will 
have higher confidence. In the method presented here, different bins in the averaging process can 
possibly have different numbers of elements due to the fact that the sample values can have 
nonuniform time spacing between them. Thus, when viewing the AD curves, it would be prudent to 
consider the statistical reliability of the data points in these curves, and that consideration would be 
based upon examination of how many samples were used in calculating these data points. 
 
 

CONCLUSIONS  
 

The modified method for calculating Allan Variance (AV) that is presented here can 
accommodate input data streams with intervals of arbitrary lengths between time samples. This 
method enables analysis of more types of data than the conventional AV equations allow. This 
method can also accommodate the limiting case of uniformly spaced data samples as the 
conventional AV equation can do. The Matlab code has been tested with evenly spaced input data 
as well as with unevenly spaced input data and gives expected results, which lends credence to the 
algorithm and code presented here. The Matlab code presented is well documented and allows easy 
implementation of the presented approach. 
 
 

RECOMMENDATIONS  
 

This section describes some suggested improvements to the approach and the code 
presented here. 
 

The Matlab code presented here implements the modified approach to calculation of AV for 
nonuniformly spaced time samples. It has been tested with a few datasets, but more exhaustive 
testing of the code would be desirable. Testing this code on a variety of datasets would help to 
validate it and/or to show where revisions are needed. 

 
Furthermore, it would be desirable to make the Matlab code more efficient since it may have 

to process very large datasets. For example, the dataset that was used to generate the AD plots 
shown in the report has 848,683 rows of data in it. The Matlab code presented here took a few 
minutes to execute the code. Alternatively, the code might be more efficiently implemented in C++ or 
a different computer language that is better optimized for efficient execution.  
 

An improvement to the code presented here, besides making it more efficient, is to present in 
the Allan deviance plot some indication of the statistical validity of the data presented in the plot. The 
startinidces and endindices arrays contain information on how many elements are in the bins that 
are used in the averaging process. 
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% Allan Variance Calculation April 2014 
% This program calculates the Allan Deviation curves for x, y, and z gyro 
% data streams, and prints a plot of the Allan Deviation. 
% Inputs: allanarray ([number of rows], 4) 
% Derived quantities:  N (number of rows in allanarray), tvals[N],  
% gyrox[N], gyroy[N], gyroz[N]  
% Outputs: allandevx, allandevy, allandevz -- all are functions of tau 

  
clear all; 

  
%% Read in allanarray from file 
allanarray = xlsread('data_set_name.xlsx'); 

  
%% Optional random removal of rows from allanarray to simulate nonuniformly 

spaced time samples   
% A new array, sparseallanarray, is created which is a copy of allanarray  
% except that every seventh row of allanarray is either kept or discarded  
% according to the value of a binary random variable r. 

  
i = 1; % index for sparse array elements 
j = 1; % index for allanarray elements 
allanarraynumrows = size(allanarray,1); 
sparseallanarray = zeros(allanarraynumrows,4);  % preallocation 

  
while j < allanarraynumrows - 5 
    sparseallanarray(i:i+5,:) = allanarray(j:j+5,:); % copy six rows 
    r = randi(2,1);   % Returns binary random variable 1 or 2 with equal 

probability 
    if (r==2)  
        sparseallanarray(i+6,:) = allanarray(j+6,:);  % Copy the seventh row 
        i=i+7; 
    else i=i+6; % Here, r=1. Don't copy the seventh row 
    end 
    j = j+7; % Move ahead to the next block of elements of allanarray 
end 

  
% copy the mod(allanarraynumrows,7)elements at the end of allanarray 
remainder = mod(allanarraynumrows,7); % number of rows of allanarray than have 

not yet been copied to sparseallanarray 
nonzeroindices = find(sparseallanarray(:,1));  % Find nonzero elements in column 

1, which is the time values 
lastnonzeroelement = nonzeroindices(end);  % last nonzero element of time values 
if ~isequal(remainder,0)  
    sparseallanarray(lastnonzeroelement+1:lastnonzeroelement+remainder,:) = 

allanarray(allanarraynumrows-remainder+1:allanarraynumrows,:); 
end 

  
% get rid of the extra zeroes at the end of sparseallanarray 
sparseallanarray2 = sparseallanarray(1:lastnonzeroelement+remainder,:); 
allanarray = sparseallanarray2;  %copy the sparse allan array into allanarray for 

further processing 

  

  
%% Break up big matrix into smaller matrices 
tvals = allanarray(: , 1); 
gyrox = allanarray(: , 2); 
gyroy = allanarray(: , 3); 
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gyroz = allanarray(: , 4); 
N = length (tvals); 

  
%% Determine the range of valid tau values   
% based on examination of tvals values. Tau cannot be too small or else  
% there will not be enough elements to do proper bin averages. Tau cannot 
% be too large or else there will not be enough bins to average over to  
% calculate the Allan deviation. To calculate the minimum tau value, 
% check out all windows of length 9 (the minimum number of elements needed 
% to do a proper average) and tau must be at least as large as the window 
% with the largest time span. 

  
mask = ones(1, 9); 
deltats = diff(tvals); % vector of differences of adjacent time values 
w = conv(deltats, mask, 'valid'); 
taumin = max(w); 
duration = tvals(N); 
taumax = duration / 9.001; 

  
%% Set up outer loop  
% Calculate Allan variance for tau = taumin to taumax.  
tauvals = logspace (log10(taumin), log10(taumax), 250); 
numtaus = length (tauvals); 

  
% Preallocation 
allandevx = zeros(1, numtaus); 
allandevy = zeros(1, numtaus); 
allandevz = zeros(1, numtaus); 
binnos = zeros(1, N); 

  
%% Outer loop 
for k = 1:numtaus 
    tau = tauvals(k); 

     

    
% Create startindices and endindices arrays based on the array of  
% measurement times. Calculate endindices, and then startindices can easily 
% be derived from it. binnos is an auxiliary vector whose components are  
% the bin number of the corresponding element of tvals. 
    startindices = zeros(1,N);   %preallocation 
    endindices = zeros(1,N);     %preallocation 
    binnos(1) = 1; 
    startindices (1) = 1; 

  
    % j is row number in tvals, and i is bin number. 
    for j = 2:N 
        if (isequal (mod (tvals(j) , tau), 0)) 
            binnos(j)  = uint32( tvals(j) / tau ); 
        else binnos(j) = uint32 ( tvals(j) / tau) + 1; 
        end 

  
        if ( binnos(j) > binnos(j-1)) 
            i = binnos(j-1); 
            endindices(i) = j-1; 
            startindices(i+1) = endindices(i)+1; 
        end 
    end 
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    endindices(binnos(N))= N; 
    % If the final bin has fewer than 9 elements, exclude it from future 
    % processing. 
    if (endindices(binnos(N)) - startindices(binnos(N)) < 8) 
        numbins = binnos(N) - 1; 
    else numbins = binnos(N); 
    end 

        
% Calculate averages, deltas, squareds, sumofsquares, and allandev vectors 
% Sum over each bin to get the bin averages 

  
% Preallocation 
avgsx = zeros(1, numbins); 
avgsy = zeros(1, numbins); 
avgsz = zeros(1, numbins); 

  
   for i = 1:numbins 
       si = startindices(i); 
       ei = endindices(i); 

  
       avgsx(i) = mean(gyrox(si:ei)); 
       avgsy(i) = mean(gyroy(si:ei)); 
       avgsz(i) = mean(gyroz(si:ei)); 
   end 

        

                
   squaredsx = (diff(avgsx)).^2; 
   squaredsy = (diff(avgsy)).^2; 
   squaredsz = (diff(avgsz)).^2; 

  
   allandevx(k) = (  sum(squaredsx) / (2 * (numbins -1))  )^0.5; 
   allandevy(k) = (  sum(squaredsy) / (2 * (numbins -1))  )^0.5; 
   allandevz(k)  = (  sum(squaredsz) / (2 * (numbins -1))  )^0.5; 

  
end 

  
%% Write the Allan deviations vectors into Excel files  
% for later viewing and processing.  The units of these vectors are  
% deg/sec. 
xlswrite ('tauvals.xls', tauvals); 
xlswrite ('allandevx.xls', allandevx); 
xlswrite ('allandevy.xls', allandevy); 
xlswrite ('allandevz.xls', allandevz); 

  
%% Display the vectors in a log-log plot for immediate viewing. 
% Convert deg/sec vectors to deg/hour. 
allandevx = allandevx * 3600; 
allandevy = allandevy * 3600; 
allandevz = allandevz * 3600; 

  
loglog (tauvals, allandevx, '-r', tauvals, allandevy, '-g', tauvals, allandevz, 

'-b') 
grid on 
xlabel ('Time (seconds)'); 
ylabel ('Allan Deviation (degrees / hour)'); 
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title('Allan Deviation for Gyro Data'); 
legend('X-Axis', 'Y-Axis', 'Z-Axis'); 
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